Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth.

نویسندگان

  • M Watarai
  • H L Andrews
  • R R Isberg
چکیده

Legionella pneumophila grows in human alveolar macrophages and resides within a phagosome that initially lacks proteins associated with the endocytic pathway. Required for targeting to this unique location is the Dot/Icm complex, which is highly similar to conjugative DNA transfer apparatuses. Here, we show that exposure to three distinct inducing conditions resulted in the formation of a fibrous structure on the bacterial cell surface that contained the DotH and DotO proteins. These conditions included: (i) incubation for 2 h with mouse bone marrow-derived macrophages; (ii) incubation for 2 h in macrophage-conditioned media; or (iii) replication of bacteria for 22 h within macrophages. Introduction of bacteria harbouring the surface-exposed DotH and DotO onto a fresh monolayer resulted in loss of the surface localization of DotH and DotO shortly after uptake. Treatments that resulted in the production of the fibrous structure enhanced the rate at which the bacteria were internalized, but there was no corresponding increase in the efficiency of intracellular growth compared with bacteria that had been cultured in broth using conditions that resulted in maximal intracellular growth. These data indicate that the surface-exposed DotH and DotO on L. pneumophila may act either just before lysis from the macrophage or at the earliest stages of infection, transiently relocating in a fibrous structure on the bacterial cell surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway.

Legionella pneumophila replicates within a specialized phagosome in cultured cells, a function necessary for its pathogenicity. The replicative phagosome lacks membrane marker proteins, such as the glycoprotein LAMP-1, that are indicators of the normal endocytic pathway. We describe the isolation of several Legionella genes essential for intracellular growth and evasion of the endocytic pathway...

متن کامل

Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex.

Legionella pneumophila utilizes a type IV secretion system (T4SS) encoded by 26 dot/icm genes to replicate inside host cells and cause disease. In contrast to all other L. pneumophila dot/icm genes, dotU and icmF have homologs in a wide variety of gram-negative bacteria, none of which possess a T4SS. Instead, dotU and icmF orthologs are linked to a locus encoding a conserved cluster of proteins...

متن کامل

Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems

The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least ...

متن کامل

Investigation of Legionella Pneumophila bacteria in hospital water supply systems

Introduction: Legionella Pneumophila bacteria is known as one of the most important nosocomial infections and the most common cause of death in patients. This study was aimed to identify Legionella Pneumophila bacteria in hospital water supply systems. Material and Methods: This descriptive cross-sectional study was performed to identify Legionella pneumophila in hot and cold-water systems of i...

متن کامل

The Different Antibacterial Impact of Silver Nanoparticles Against Legionella pneumophila Compared to Other Microorganisms

Legionella pneumophila is the pathogen responsible for severe pneumonia known as Legionnaires’ disease. Legionella can live under varied stress conditions, especially in cold environments, and is common in many artificial environments. In this study, the antimicrobial activity of biogenic silver nanoparticles, prepared using the culture supernatant of Klebsiella pneumoniae, was evaluated agains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 39 2  شماره 

صفحات  -

تاریخ انتشار 2001